• Advestis

The WA105 project: a prototype of double phase liquid argon time projection chamber

Mis à jour : mars 8

P. Cotte. PhD Thesis, 2019, Université Paris-Saclay.

Absract: The WA105/ProtoDUνE-DP project is a prototyping experiment which goal is to test the Double Phase Liquid Argon Time Projection Chamber (DLArTPC) technology at large scale, to use it in the future neutrinos physics experiment DUνE. Scheduled for the end of 2026 in the USA, DUνE aims at measuring the neutrinos mass ordering and the leptonic CP symetry violation. The first part of this thesis is dedicated to tests and simulations of the detection and amplification elements of the WA105 detectors. The second part is focused on the analysis of cosmic muon tracks seen by a first prototype of 4t, operated at CERN in 2017. The DLArTPC technology is a variation of the LArTPC technology allowing for the amplification of the electrons extracted from the liquid phase to the gas phase. The Large Electron Amplifiers (LEMs) are 50x50cm² PCB plates with a thickness of 1mm, pierced by 400k holes of 500 microns diameter, covered on each side by a thin layer of copper giving a gain superior to 10. Part of this thesis work is about the simulation of electrons drifting through those LEMs to study the charge collection efficiencies. Another part of this thesis is about the measurement of important caracteristics (thickness, voltage stability) of the LEMs that are used in the 300t demonstrator of WA105, which commissionning was done in the end of August 2019. The gain is one of the main caracteristics of a DLArTPC, and it has been studied in the 4t prototype by detecting cosmic muons. Comparisons are done with previous results from 2014 from a smaller prototype of 3L, and a dedicated reconstruction program was created to analyse noisy events. The work done in the thesis allowed for a better understanding of DALrTPCs, mainly on the multiplication and drift of electrons. This knowledge will be important during the operation of the 300t demonstrator at CERN, and during the operationg of the DLArTPC module of DUνE.

Download Thesis